منابع مشابه
Product of graded submodules
Let Δ be an abelian group. By considering the notion multiplication of Δ-graded modules (see [7]) over a commutative Δ-graded ring with unity, we introduce the notion of product of two Δ-graded submodules which we use to characterize the Δ-graded prime submodules of a multiplication Δ-graded module. Finally we proved a graded version of Nakayama lemma for multiplication Δ-graded modules.
متن کاملWeakly Primal Graded Superideals
Let G be an abelian group and let R be a commutative G-graded super-ring (briefly, graded super-ring) with unity 1 6= 0. We say that a ∈ h(R), where h(R) is the set of homogeneous elements in R, is weakly prime to a graded superideal I of R if 0 6= r a ∈ I , where r ∈ h(R), then r ∈ I . If ν(I ) is the set of homogeneous elements in R that are not weakly prime to I , then we define I to be weak...
متن کاملOn graded classical prime and graded prime submodules
Let $G$ be a group with identity $e.$ Let $R$ be a $G$-graded commutative ring and $M$ a graded $R$-module. In this paper, we introduce several results concerning graded classical prime submodules. For example, we give a characterization of graded classical prime submodules. Also, the relations between graded classical prime and graded prime submodules of $M$ are studied.
متن کاملOn graded almost semiprime submodules
Let $G$ be a group with identity $e$. Let $R$ be a $G$-graded commutative ring with a non-zero identity and $M$ be a graded $R$-module. In this article, we introduce the concept of graded almost semiprime submodules. Also, we investigate some basic properties of graded almost semiprime and graded weakly semiprime submodules and give some characterizations of them.
متن کاملGraded Specht Modules
Recently, the first two authors have defined a Z-grading on group algebras of symmetric groups and more generally on the cyclotomic Hecke algebras of type G(l, 1, d). In this paper we explain how to grade Specht modules over these algebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Mathematical Society
سال: 2011
ISSN: 0304-9914
DOI: 10.4134/jkms.2011.48.5.927